Multidimensional butterfly factorization

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multidimensional butterfly factorization

This paper introduces the multidimensional butterfly factorization as a data-sparse representation of multidimensional kernel matrices that satisfy the complementary low-rank property. This factorization approximates such a kernel matrix of size N ×N with a product of O(logN) sparse matrices, each of which contains O(N) nonzero entries. We also propose efficient algorithms for constructing this...

متن کامل

Butterfly Factorization

The paper introduces the butterfly factorization as a data-sparse approximation for the matrices that satisfy a complementary low-rank property. The factorization can be constructed efficiently if either fast algorithms for applying the matrix and its adjoint are available or the entries of the matrix can be sampled individually. For an N ×N matrix, the resulting factorization is a product of O...

متن کامل

Interpolative Butterfly Factorization

This paper introduces the interpolative butterfly factorization for nearly optimal implementation of several transforms in harmonic analysis, when their explicit formulas satisfy certain analytic properties and the matrix representations of these transforms satisfy a complementary low-rank property. A preliminary interpolative butterfly factorization is constructed based on interpolative low-ra...

متن کامل

Multidimensional factorization through helical mapping

This paper proposes a new perspective on the problem of multidimensional spectral factorization, through helical mapping: ddimensional (dD) data arrays are vectorized, processed by 1D cepstral analysis and then remapped onto the original space. Partial differential equations (PDEs) are the basic framework to describe the evolution of physical phenomena. We observe that the minimum phase helical...

متن کامل

A Multiscale Butterfly Algorithm for Multidimensional Fourier Integral Operators

This paper presents an efficient multiscale butterfly algorithm for computing Fourier integral operators (FIOs) of the form (Lf)(x) = ∫ Rd a(x, ξ)e f̂(ξ)dξ, where Φ(x, ξ) is a phase function, a(x, ξ) is an amplitude function, and f(x) is a given input. The frequency domain is hierarchically decomposed into a union of Cartesian coronas. The integral kernel a(x, ξ)e in each corona satisfies a spec...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Applied and Computational Harmonic Analysis

سال: 2018

ISSN: 1063-5203

DOI: 10.1016/j.acha.2017.04.002